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High-precision motion control Molten material

passes through

Actuator rods
heat up

Metal deforms
under heat

Deformed rods cause
e | positioning errors
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Heat transfer

If we can predict heating,
we can predict deformations.

If we can predict deformations,
we can correct positioning.

If we can correct positioning, manufacturing will be more precise.
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Convection

Convection is exchange of heat with the medium
around the machine.

* Nonlinear transient.

* Reaches steady-state over time.

Modelling convection typically requires
computational fluid dynamics solvers.
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Demonstrator: heated rod




cell temperatures

Dynamics T, (£)
T(t) = [T2(t)
Lumped-element model: T5(t) U (6)
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mqCpy 0 0 ambient temperature
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Dynamics

Convection can be split into linear and nonlinear components:

h(T; (1), Ta (1)) = hqa;(To(t) — Ti(t)) + r(T; (1), To (1))

/' TN

convection coefficient surface area of cell

Combining linear components and absorbing ambient temperature into input, yields:

MT(t) = FT(t) + r(T(t), T, (t)) + Gu(t)
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Simulation without nonlinear convection effects
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Approximate convection effects

The effect of convection on temperature change can be estimated with a GP-SSM:

r(T (), To(T) = p(t)

where p(t) = —Ap(t) + w(t)

This SDE corresponds to a Gaussian process with kernel covariance function:

Samples from GP Prior
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Model specification

The temperature dynamics model can be augmented with the GP SDE:

[T(t) S [T(t)] +[M e + 9w

o] L o —arllp(®)
x(t) _
o . . . Ti1
Discretizing and casting to probabilistic form gives: :
D (xp | X1, Ug) = N (xg|Axp—1 + Biig, Q) v = Tkr
— K 0
k1

We add a likelihood term for the noisy temperature observations: Pk LA

P (Vi lxr) = N (yr|Cxg, R)
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Inference

State estimation using Bayesian filtering / smoothing: P (X |Vi.n, Ug.n) = N O |lmy, S)

12

@model function SSM(y,u, A,B,C,Q,R,m@,S@,T)

end

# State prior distribution
X_© ~ MvNormal(m@, Se)
x_kminl = x_@
Tor k= 4:T

# Stochastic state transition
x[k] ~ MvNormal(A*x_kminl + B*u[k], Q)

# Likelihood function
y[k] ~ MvNormal(C*x[k], R)

x_kminl = x[k]
end

n;'rxinfer

Automatic Bayesian Inference through Reactive Message Passing
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Inference

State estimates only capture the effect of convection on the temperature gradient.

* We want to know the function between temperatures T;, T4, and convection effect py.

* We want to quantify the uncertainty around this function estimate.

Solution:
Bayesian regression of T,;, and MAP estimates of T}, onto distribution of p;.

p(mj|mik, Tak, 0;) = N (M |0] @ (Mg, Tare), Sijie)
p(6;) = N(6;10, W5 ™)
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Experiment: verification

Experiment uses designed polynomial nonlinear convection function:

100
0 F
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change in temperature [AC]
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temperature [C]

Goal: recover nonlinear convection function.

Identification:
1. State estimation from time series (Bayesian smoothing).
2. Regress temperature states onto p states (Bayesian polynomial regression).
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Experiment: verification

Evaluation consists of comparing simulated temperatures between true and identified system.

True system:

* Evolve temperatures using dynamics model + designed nonlinear convection function.

Identified system:

e Evolve temperature forward using dynamics model + identified polynomial regression
function (using current temperature estimate and ambient temperature).

s TU/e



Experiment: verification
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Experiment: verification
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Experiment: validation

Identification:
1. State estimation from observations (Bayesian smoothing).
2. Regress temperature states and ambient temperature onto p states (Bayesian regression).

Evaluation by simulation:
1. Evolve temperature using dynamics model.

2. Evolve temperature using dynamics model + polynomial regression function applied to
current temperature and ambient temperature.

3. Compare difference between simulated and observed temperatures.

18 TU/e



Experiment: validation
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Discussion

Limitations:

e Currently a two-stage procedure (online + offline).
* But regression coefficients could be estimated recursively.

* Every cell requires has 1 accompanying GP-SSM, thereby doubling the number of states.
* For higher-order Whittle-Matérn kernels, this becomes a tripling or quadrupling.

Future work:

e Group Gaussian processes over temperature cells.

* Co-optimization with conduction parameter estimation.
* Modelling effects of active convection.
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Conclusion

* Heat transfer dynamics can be augmented with Gaussian processes in SDE form.
* Gaussian process latent force models can recover convection effects in heat transfer.

* Gaussian process latent force models are computationally cost-effective (online estimation).
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Thank you
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