
Bayesian Intelligent Autonomous Systems lab

Wouter M. Kouw
2020-03-31

Schedule-free variational message-passing for Bayesian filtering



Bayesian filtering

Goal: recover underlying states and parameters from a noisy signal.

State-space model:

2



Free Energy Principle

Form a Free Energy function with beliefs q that approximate the generative model p:

     → Minimising Free Energy = updating beliefs q to match the posterior p.

3



Message passing

Model factorises → build factor graph and perform variational message passing:

4



Message passing

Model factorises → build factor graph and perform variational message passing:

5

μ(x0)

prior
p(x0)

state
transition
p(xt | xt-1)

xt

likelihood
p(yt | xt) yt

μ(xt)

μ(xt)

q(xt)

f

f

f



Scheduler

Currently, automatic message passing tools such as ForneyLab.jl employ a master scheduler:

But such an algorithm / compiler is biologically implausible. 

6

function stepSMF!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 40))

messages[1] = ruleVBGaussianMeanVarianceOut(nothing, ...
messages[2] = ruleVBGaussianMeanPrecisionM(marginals[:s_1], nothing, marginals[:w])
messages[3] = ruleVBGaussianMeanPrecisionOut(nothing, marginals[:s_0], marginals[:w])
messages[4] = ruleVBGaussianMeanPrecisionM(marginals[:s_2], nothing, marginals[:w])
messages[5] = ruleVBGaussianMeanVarianceM(ProbabilityDistribution(Univariate, PointMass, m=data[:x][1]), ...

:
:

marginals[:s_0] = messages[1].dist * messages[2].dist
marginals[:s_1] = messages[3].dist * messages[6].dist
marginals[:s_2] = messages[7].dist * messages[10].dist
marginals[:s_3] = messages[11].dist * messages[14].dist
marginals[:s_4] = messages[15].dist * messages[18].dist

:
:

return marginals
end



Scheduler

Currently, automatic message passing tools such as ForneyLab.jl employ a master scheduler:

But such an algorithm / compiler is biologically implausible. 

Research Question: How can we perform message passing without a scheduler?

7

function stepSMF!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 40))

messages[1] = ruleVBGaussianMeanVarianceOut(nothing, ...
messages[2] = ruleVBGaussianMeanPrecisionM(marginals[:s_1], nothing, marginals[:w])
messages[3] = ruleVBGaussianMeanPrecisionOut(nothing, marginals[:s_0], marginals[:w])
messages[4] = ruleVBGaussianMeanPrecisionM(marginals[:s_2], nothing, marginals[:w])
messages[5] = ruleVBGaussianMeanVarianceM(ProbabilityDistribution(Univariate, PointMass, m=data[:x][1]), ...

:
:

marginals[:s_0] = messages[1].dist * messages[2].dist
marginals[:s_1] = messages[3].dist * messages[6].dist
marginals[:s_2] = messages[7].dist * messages[10].dist
marginals[:s_3] = messages[11].dist * messages[14].dist
marginals[:s_4] = messages[15].dist * messages[18].dist

:
:

return marginals
end



Schedule-free message passing

Consider the following set-up:

8



Schedule-free message passing

Consider the following set-up:

1. A factor node responds to an incoming belief by passing messages to all other variables:

9



Schedule-free message passing

Consider the following set-up:

1. A factor node responds to an incoming belief by passing messages to all other variables:

10



Schedule-free message passing

Consider the following set-up:

2. A variable node is updated based on the product of incoming messages:

11

x

q(x)

f

f

f



Schedule-free message passing

Consider the following set-up:

2. A variable node is updated based on the product of incoming messages:

12

μ(x)

x

μ(x)

q(x) μ(x)

f

f

f



Schedule-free message passing

Consider the following set-up:

2. A variable node is updated based on the product of incoming messages:

13

μ(x)

x

μ(x)

q(x) μ(x)

f

f

f



Schedule-free message passing

Consider the following set-up:

3. Inital state prior and observed variables start flow of messages through factor graph.

14



Schedule-free message passing

Messages now flow freely through the graph

15



Schedule-free message passing

Messages now flow freely through the graph

16



Schedule-free message passing

Messages now flow freely through the graph

17



Schedule-free message passing

Messages now flow freely through the graph

18



Schedule-free message passing

Messages now flow freely through the graph

19



Schedule-free message passing

Messages now flow freely through the graph

20



Schedule-free message passing

Messages now flow freely through the graph

21



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

22



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

23



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

24



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

25



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

26



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

27



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

We can measure local Free Energy, F[q(x
t
)], to check 

whether beliefs are being updated significantly enough.

28



Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

We can measure local Free Energy, F[q(x
t
)], to check 

whether beliefs are being updated significantly enough.

If a message arrives at a factor node from a variable that
has not changed enough, we can tell the node not to react.

29



Experiment

Comparing a scheduled message passing procedure with the schedule-free algorithm:

scheduled       schedule-free
        MSE = 0.454        MSE = 0.611

30



Open questions

– Will this message passing procedure produce suboptimal estimates?

    → It is entirely possible that suboptimality propagates through the graph.

31



Open questions

– Will this message passing procedure produce suboptimal estimates?

    → It is entirely possible that suboptimality propagates through the graph.

– Implementation can be made more efficient with Functional Reactive Programming.

    → Asychronous message passing is a core feature.

32



Questions?

Thanks to my fellow lab members:

Bert de Vries Thijs van de Laar             Ivan Bocharov             Ismail Senoz             Semih Akbayrak       Magnus Koudahl      Albert Podusenko           Dmitry Bagaev

Bayesian Intelligent Autonomous Systems lab


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

