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Schedule-free variational message-passing for Bayesian filtering



Bayesian filtering

Goal: recover underlying states and parameters from a noisy signal.

State-space model:

2



Free Energy Principle

Form a Free Energy function with beliefs q that approximate the generative model p:

     → Minimising Free Energy = updating beliefs q to match the posterior p.
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Message passing

Model factorises → build factor graph and perform variational message passing:

4



Message passing

Model factorises → build factor graph and perform variational message passing:

5

μ(x0)

prior
p(x0)

state
transition
p(xt | xt-1)

xt

likelihood
p(yt | xt) yt

μ(xt)

μ(xt)

q(xt)

f

f

f



Scheduler

Currently, automatic message passing tools such as ForneyLab.jl employ a master scheduler:

But such an algorithm / compiler is biologically implausible. 
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function stepSMF!(data::Dict, marginals::Dict=Dict(), messages::Vector{Message}=Array{Message}(undef, 40))

messages[1] = ruleVBGaussianMeanVarianceOut(nothing, ...
messages[2] = ruleVBGaussianMeanPrecisionM(marginals[:s_1], nothing, marginals[:w])
messages[3] = ruleVBGaussianMeanPrecisionOut(nothing, marginals[:s_0], marginals[:w])
messages[4] = ruleVBGaussianMeanPrecisionM(marginals[:s_2], nothing, marginals[:w])
messages[5] = ruleVBGaussianMeanVarianceM(ProbabilityDistribution(Univariate, PointMass, m=data[:x][1]), ...

:
:

marginals[:s_0] = messages[1].dist * messages[2].dist
marginals[:s_1] = messages[3].dist * messages[6].dist
marginals[:s_2] = messages[7].dist * messages[10].dist
marginals[:s_3] = messages[11].dist * messages[14].dist
marginals[:s_4] = messages[15].dist * messages[18].dist

:
:

return marginals
end



Scheduler

Currently, automatic message passing tools such as ForneyLab.jl employ a master scheduler:

But such an algorithm / compiler is biologically implausible. 

Research Question: How can we perform message passing without a scheduler?
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Schedule-free message passing

Consider the following set-up:
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1. A factor node responds to an incoming belief by passing messages to all other variables:
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Schedule-free message passing

Consider the following set-up:

2. A variable node is updated based on the product of incoming messages:
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Schedule-free message passing

Consider the following set-up:

2. A variable node is updated based on the product of incoming messages:
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Schedule-free message passing

Consider the following set-up:

3. Inital state prior and observed variables start flow of messages through factor graph.
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Schedule-free message passing

Messages now flow freely through the graph
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Schedule-free message passing

Messages now flow freely through the graph
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Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.
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Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

We can measure local Free Energy, F[q(x
t
)], to check 

whether beliefs are being updated significantly enough.
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Schedule-free message passing

How should this procedure be terminated?

    → Updated beliefs are shaped by priors and likelihoods and will converge.

We can measure local Free Energy, F[q(x
t
)], to check 

whether beliefs are being updated significantly enough.

If a message arrives at a factor node from a variable that
has not changed enough, we can tell the node not to react.
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Experiment

Comparing a scheduled message passing procedure with the schedule-free algorithm:

scheduled       schedule-free
        MSE = 0.454        MSE = 0.611
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Open questions

– Will this message passing procedure produce suboptimal estimates?

    → It is entirely possible that suboptimality propagates through the graph.
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Open questions

– Will this message passing procedure produce suboptimal estimates?

    → It is entirely possible that suboptimality propagates through the graph.

– Implementation can be made more efficient with Functional Reactive Programming.

    → Asychronous message passing is a core feature.

32



Questions?

Thanks to my fellow lab members:

Bert de Vries Thijs van de Laar             Ivan Bocharov             Ismail Senoz             Semih Akbayrak       Magnus Koudahl      Albert Podusenko           Dmitry Bagaev

Bayesian Intelligent Autonomous Systems lab
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