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Domain Adaptation

– A supervised learning setting where training and test data 
stem from different biased samplings.

– For example, perform the same clinical experiment in different 
hospitals.

– Geographically biased sampling.

– More formally:
– Shared sample space

– Shared event space

– Different probability measures      ,
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Current approaches

– A standard procedure for DA relies on making an assumption 
on domain dissimilarity and deviating from the source model.

– Sensitive to estimation errors.
– Sensitive to class-dependent transformations.
– Sensitive to disjoint empirical supports.
– Sensitive to model misspecification.

– As a result, DA approaches can perform worse than naive 
models.
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Target Contrastive Estimation

– We are specifically interested in never performing worse than 
the source model.

– Can we construct a parameter estimator such that its 
likelihood is larger than or equal to the likelihood of the source 
estimator on the target domain?

– In order to do this, we will contrast the hypothetical target 
estimate with the source estimate for worst-case labellings.
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Notation

– Source samples:

– Target samples:

– Likelihood of model parameter given source data

– Likelihood of model parameter given target data
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Source estimator

– Since we have labeled source data, we can fit a model:

where       is the parameter space.

– The likelihood of this parameter on the target samples can be 
evaluated through:
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Contrast

– We want to construct a parameter estimator        for which the 
following holds:

or equivalently: 

– Maximizing this contrast w.r.t.     leads to an estimator that 
returns the source estimate when it can not do better.
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Pessimism

– However, the true target labels     are unknown.

– In order to still construct an estimator that never performs 
worse than the source estimator, we can consider worst-case 
labellings.

– Such a labeling can be obtained by proposing a hypothetical 
labeling      for each sample and minimizing the likelihood:



15

Pessimism

– Incorporating the minimization over labellings in the contrast 
yields:

– If we choose discrete labellings, the minimization will be 
combinatorial and expensive.

– Therefore, we employ a convex relaxation of the labeling space.

– Corresponds to class posterior probabilities:                                               .

–       will be an element of a K-1 dimensional simplex               .
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Target Contrastive Estimation

– The resulting maximum contrastive pessimistic likelihood 
estimator is :
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Linear Discriminant

– Linear Discriminant Analysis is a classical classifier with a 
particularly interesting property under this estimator.

– LDA fits a Gaussian distribution to each class:

where 

– Plugging that into the TCE formulation:
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TCE-LDA

Theorem: 
For continuously distributed feature vectors and a sample size 
m ≥ d + K , the likelihood of the TCE estimate is almost surely 
strictly larger than the source estimate.

– Does not hold for novel target samples.
– Does not directly translate to other measures (e.g. error rate).
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Optimization - init
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Optimization - max
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Optimization - min

Z
X



22

Optimization - max

Z
X



23

Optimization - min

Z
X



24

Optimization - max

Z
X



25

Optimization - min

Z
X



26

Optimization – saddle
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Experiment

– Heart disease dataset:
– 4 hospitals: Cleveland, Virginia, Hungary and Switzerland.



28

Experiment
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Conclusion

– Target Contrastive Estimation obtains parameters that are 
never less likely than the source estimators.

– Increases in likelihood do not directly correspond to decreases 
in error rates.

– The results due to the worst-case labeling do not hold for novel 
target samples (transductive only).
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Questions
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