
Variational Bayes for signal processingVariational Bayes for signal processing

Sioux OPT/ML SeminarSioux OPT/ML Seminar

Wouter Kouw | November 5th, 2020

Suppose you're ge�ng the following incoming signal:

Let's start modeling this signal with a standard Kalman filter. For this, I will use our
toolbox .ForneyLab.jl (h�ps://github.com/biaslab/ForneyLab.jl)

https://github.com/biaslab/ForneyLab.jl

In [5]: # Process noise covariance matrix

Q = [1. 0.;

 0. 1.]

Measurement noise variance

R = 1.0

Transition matrix

Δt = 0.1

A = [1. Δt;

 0. 1.]

Emission matrix

C = [1., 0.]

Previous state

@RV x_kmin1 ~ GaussianMeanVariance(placeholder(:m_kmin1, dims=(2,)),

 placeholder(:S_kmin1, dims=(2,2)))

State transition

@RV x_k ~ GaussianMeanVariance(A*x_kmin1, Q)

Observation likelihood

@RV y_k ~ GaussianMeanVariance(dot(C, x_k), R);

Manually mark y_k as observed variable

placeholder(y_k, :y_k);

Next, I am going to specify an inference algorithm. ForneyLab will compile one based on
the model specifica�on and we can run it to obtain es�mates for each �me step.

In [7]: # Compile algorithm and bring to scope

algorithm = messagePassingAlgorithm(x_k)

source_code = algorithmSourceCode(algorithm)

eval(Meta.parse(source_code))

Recursive estimation

@showprogress for k = 1:T

 # Feed data

 data = Dict(:y_k => observations[k],

 :m_kmin1 => params_x[1][:,k],

 :S_kmin1 => params_x[2][:,:,k])

 # Update posterior

 step!(data, posteriors)

 # Update parameter estimates

 params_x[1][:,k+1] = mean(posteriors[:x_k])

 params_x[2][:,:,k+1] = cov(posteriors[:x_k])

end

Progress: 100%|███| Time: 0:00:05

Let's see how well the model did.

So, what is happening here?

We have 1-dimensional noisy posi�on observa�ons and 2-dimensional hidden states
, where the first element is the true posi�on and the second element velocity.

I started with a state-space model of the following form:

where is a known transi�on matrix, , and a known emission matrix,

.

𝑦𝑘

𝑥𝑘

=𝑥𝑘

=𝑦𝑘

 𝐴 +𝑥𝑘−1 𝑤𝑘

 𝐶 +𝑥𝑘 𝑣𝑘

𝐴 𝐴 = []1

0

Δ𝑡

1
𝐶

𝐶 = []1 0

The process noise is white: .

Gaussian distribu�ons have an interes�ng property:

We can view the state transi�on equa�on as a transforma�on of the noise variable:

𝑤𝑘 ∼  (0, 𝑄)𝑤𝑘

if 𝑧 ∼  (0, 1), then 𝑥 = 𝜎𝑧 + 𝜇 ⟹ 𝑥 ∼  (𝜇, 𝜎) .

∼  (𝐴 , 𝑄) .𝑥𝑘 𝑥𝑘−1

Similarly, for measurement noise , we can write:∼  (0, 𝑅)𝑣𝑘

∼  (𝐶 , 𝑅) .𝑦𝑘 𝑥𝑘

In this state-space model, we start with a . Suppose this is also Gaussian distributed:𝑥0

∼  (,)𝑥0 𝑚0 𝑆0

Think of this as a solid guess for what the ini�al state is, characterized by our
uncertainty surrounding it.

We want to infer the next state . Using the calculus of probability, we express this as:

But how do you actually solve this?

𝑥1

𝑝(∣) = ∫ 𝑝(∣)𝑝(∣)𝑝()d .𝑥1 𝑦1

1

𝑝()𝑦1

𝑦1 𝑥1 𝑥1 𝑥0 𝑥0 𝑥0

We know that and . You can form
a bivariate Gaussian out of these two:

𝑝(∣) =  (∣ 𝐴 , 𝑄)𝑥1 𝑥0 𝑥1 𝑥0 𝑝() =  (,)𝑥0 𝑚0 𝑆0

 ([] ∣ [] , []) .
𝑥0

𝑥1

𝑚0

𝐴𝑚0

𝑆0

𝐴𝑆0

𝑆0𝐴⊤

𝐴 + 𝑄𝑆0𝐴⊤

If you then integrate out , you get:𝑥0

∼  (𝐴 , 𝐴 + 𝑄) .𝑥1 𝑚0 𝑆0𝐴⊤

You might recognize the parameters of this distribu�on as the predict step in the classic
deriva�on of the Kalman filter (paraphrased from Wikipedia):

=𝑚̂ 𝑘|𝑘−1

=𝑆̂
𝑘|𝑘−1

 𝐴𝑚𝑘−1|𝑘−1

 𝐴 + 𝑄 .𝑆𝑘−1|𝑘−1𝐴⊤

Since we know that is also Gaussian, we can perform the same trick to
obtain a joint distribu�on .

𝑝(∣)𝑦1 𝑥1

𝑝(,)𝑦1 𝑥1

Now, we are le� with Bayes' rule:

𝑝(∣) = .𝑥1 𝑦1

𝑝(,)𝑦1 𝑥1

𝑝()𝑦1

Usually, you can't compute . But with Gaussians, you can obtain a condi�onal
distribu�on from a joint. For a joint distribu�on over

the condi�onal is:

𝑝()𝑦1

𝑥, 𝑦

 ([] ∣ [] , []) ,
𝑥

𝑦

𝑎

𝑏

𝐴

𝐶 ⊤

𝐶

𝐵

𝑝(𝑥 ∣ 𝑦)

 (𝑎 + 𝐶 (𝑦 − 𝑏), 𝐴 − 𝐶) .𝐵−1 𝐵−1𝐶 ⊤

Again, you might recognize the structure of the parameters from the update step for the
Kalman filter:

= + (− 𝐶) .𝑚𝑘|𝑘 𝑚̂ 𝑘|𝑘−1 𝐾𝑘 𝑦𝑘 𝑚̂ 𝑘|𝑘−1

If consider the general case, , and kept proper track of nota�on, then you
will find that recursively compu�ng the posterior distribu�on is equivalent to Kalman
filtering.

𝑝(∣)𝑥𝑘 𝑦1:𝑘

ForneyLab is designed to automa�cally performs all these condi�oning and
marginaliza�on opera�ons.

But the probabilis�c perspec�ve can do much more. For example, we can
simultaneously es�mate unknown (�me-varying) parameters, such as process noise
vola�lity.

Break

Not all models consist of purely Gaussian distribu�ons. O�en, we do not have analy�cal
solu�ons to integrals.

In that case, we can do a form of approximate Bayesian inference: Varia�onal Bayes.

The gist of Varia�onal Bayes is that we approximate the intractable posterior with a
tractable distribu�on.

Again, what is happening here?

The red contour plot you see is a Normal-Gamma distribu�on:

It is a distribu�on of a mean parameter and a precision parameter , that come from a
Gaussian likelihood func�on. Suppose we don't know how to perform the necessary
marginaliza�on and condi�oning opera�ons to obtain proper�es of this distribu�on.

𝑝(𝜇, 𝜏 ∣ 𝑥) = (𝜇, 𝜏 ∣ 𝑚, 𝑙, 𝑎, 𝑏)

𝜇 𝜏

We can pose another simpler distribu�on that we can use to approximate the
posterior as well as possible.

𝑞(𝜇, 𝜏)
𝑝(𝜇, 𝜏 ∣ 𝑥)

But what is this ?𝑞(𝜇, 𝜏)

Let the approxima�ng, or recogni�on distribu�on, factorize as follows:

where

In words: we are going to approximate the posterior distribu�on with the product of a
Normal distribu�on and a Gamma distribu�on, that are assumed to be independent of
each other.

𝑞(𝜇, 𝜏) = 𝑞(𝜇) 𝑞(𝜏)

𝑞(𝜇) ∼

𝑞(𝜏) ∼

  (,)𝑚𝜇 𝑣𝜇

 Γ(,) .𝑎𝜏 𝑏𝜏

We measure how well approximates with an objec�ve func�on known as the Free
Energy func�on:

𝑞 𝑝

[𝑞] = ∫ 𝑞(𝜇)𝑞(𝜏) log d𝜇d𝜏 ,
𝑞(𝜇)𝑞(𝜏)

𝑝(𝜇, 𝜏, 𝑥)

Note that this func�on contains the joint instead of the posterior. Remember
that the joint can be wri�en as: . That is the posterior �mes "model
evidence".

So, the Free Energy func�on contains both the Kullback-Leibler divergence between the
true posterior and the approximing distribu�on , as well as the model evidence which
allow you to compare models.

𝑝(𝜇, 𝜏, 𝑥)
𝑝(𝜇, 𝜏 ∣ 𝑥)𝑝(𝑥)

𝑝 𝑞

But what are we op�mizing over?

We want to change and to improve the approxima�on. You change
distribu�ons by changing parameters. So, the answer is that we are op�mizing over the
parameters of the two 's.

𝑞(𝜇) 𝑞(𝜏)

𝑞

You can derive the analy�c form of the op�mal recogni�on factors:

(𝜇) ∝𝑞∗

(𝜏) ∝𝑞∗

 exp ([− log  (𝑥|𝜇, 𝜏)] + [− log  (𝜇, 𝜏| , , ,)])𝔼𝑞(𝜏) 𝔼𝑞(𝜏) 𝑚0 𝑙0 𝑎0 𝑏0

 exp ([− log  (𝑥|𝜇, 𝜏)] + [− log  (𝜇, 𝜏| , , ,)])𝔼𝑞(𝜇) 𝔼𝑞(𝜇) 𝑚0 𝑙0 𝑎0 𝑏0

If you work out all the expecta�ons, then you get analy�c expressions for the
parameters of the recogni�on distribu�ons:

=𝑚∗
𝜇

=𝑣∗
𝜇

=𝑎∗
𝜏

=𝑏∗
𝜏

 (𝑛 +) / (𝑛 +)𝑥̄ 𝑙0𝑚0 𝑙0

 ((𝑛 +)
𝑎𝜏

𝑏𝜏
𝑙0)

−1

 +𝑎0

𝑛 + 1

2

 + [(− 2 + +) + 𝑛(− 2 + +)] .𝑏0

1

2
𝑙0 𝑚2

0
𝑚0𝑚𝜇 𝑚2

𝜇 𝑣𝜇 𝑥̃ 𝑥̄𝑚𝜇 𝑚2
𝜇 𝑣𝜇

Note that each parameter update depends on the other parameters. We therefore
ini�alize them and itera�vely update them.

==> This is a coordinate descent algorithm.

If we look back at the anima�on, you can see that we itera�vely update the parameters
for and :𝑞(𝜇) 𝑞(𝜏)

Break

At BIASlab, we use the Free Energy Minimisa�on framework to design more
complicated signal processing systems.

We work a lot on hierarchical models that induce �me-varying parameter es�mates.
One example of this is our Hierarchical Gaussian Filter. It is essen�ally a Kalman filter,
with an higher-layer random walk that governs process noise covariance.

In [12]: # Import custom GaussianControlledVariance node

using GCV

Start graph

graph = FactorGraph();

Volatility parameters

κ = 0.9

ω = 0.0

γ = 0.005

Previous volatility

@RV z_kmin1 ~ GaussianMeanVariance(placeholder(:m_z_kmin1), placeholder(:v_z_kmi

n1))

Current volatility

@RV z_k ~ GaussianMeanPrecision(z_kmin1, γ)

Previous state

@RV x_kmin1 ~ GaussianMeanVariance(placeholder(:m_x_kmin1), placeholder(:v_x_kmi

n1))

Current state

@RV x_k ~ GaussianControlledVariance(x_kmin1, z_k, κ, ω)

Current observation

@RV y_k ~ GaussianMeanVariance(x_k, R)

Data placeholder

placeholder(y_k, :y_k);

In [13]: q = PosteriorFactorization([z_kmin1; z_k],[x_kmin1; x_k]; ids=[:Z,:X])

algorithm = messagePassingAlgorithm(free_energy=true)

source_code = algorithmSourceCode(algorithm, free_energy=true);

eval(Meta.parse(source_code))

Recursive estimation

@showprogress for k = 1:T

 # Feed data

 data = Dict(:y_k => observations[k],

 :m_x_kmin1 => params_x[1][k],

 :v_x_kmin1 => params_x[2][k],

 :m_z_kmin1 => params_z[1][k],

 :v_z_kmin1 => params_z[2][k])

 # Iteratively update recognition factors

 for i = 1:10

 stepX!(data, posteriors)

 stepZ!(data, posteriors)

 end

 # Update parameter estimates

 params_x[1][k+1] = mean(posteriors[:x_k])

 params_x[2][k+1] = cov(posteriors[:x_k])

 params_z[1][k+1] = mean(posteriors[:z_k])

 params_z[2][k+1] = cov(posteriors[:z_k])

end

Progress: 100%|███| Time: 0:00:20

Ques�ons?

BIASlab:

References:

ForneyLab.jl (h�ps://github.com/biaslab/ForneyLab.jl)
Hierarchical Gaussian Filter
(h�ps://biaslab.github.io/pdf/mlsp2018/senoz_mlsp_2018.pdf)
Simon Särkkä - Bayesian Filtering & Smoothing
(h�ps://www.cambridge.org/core/books/bayesian-filtering-and-
smoothing/C372FB31C5D9A100F8476C1B23721A67)

https://github.com/biaslab/ForneyLab.jl
https://biaslab.github.io/pdf/mlsp2018/senoz_mlsp_2018.pdf
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67

