Variational Bayes for signal processing

Sioux OPT/ML Seminar
Wouter Kouw | November 5th, 2020

Suppose you're getting the following incoming signal:

=10 F

—20F

=30 F

—— states
@ observations

25

SIEI
time [k]

75

100

Let's start modeling this signal with a standard Kalman filter. For this, | will use our
toolbox ForneyLab.jl (https:/github.com/biaslab/ForneyLab.jl).

https://github.com/biaslab/ForneyLab.jl

In [5]: # Process noise covariance matrix

Q=1[1. 0.,
0. 1.]
Measurement noise variance
R=1.0
Tr n51t10n matrix
At = 0.
A=]1. A t;
0. 1.]

Emission matrix
= [1., 0.]

Previous state
@RV x kminl ~ GaussianMeanVariance(placeholder(:m kminl, dims=(2,)),
placeholder(:S kminl, dims=(2,2)))

State transition
@RV x k ~ GaussianMeanVariance(A*x kminl, Q)

Observation likelihood
@RV y k ~ GaussianMeanVariance(dot(C, x k), R);

Manually mark y k as observed variable
placeholder(y k, :y k);

Next, | am going to specify an inference algorithm. ForneyLab will compile one based on
the model specification and we can run it to obtain estimates for each time step.

In [7]: # Compile algorithm and bring to scope
algorithm = messagePassingAlgorithm(x k)
source code = algorithmSourceCode(algorithm)
eval(Meta.parse(source code))

Recursive estimation
@showprogress for k = 1:T

Feed data

data = Dict(:y k => observations[k],
:m_kminl => params x[1][:, k],
:S_kminl => params x[2][:,:,k])

Update posterior
step! (data, posteriors)

Update parameter estimates

params x[1][:,k+1] = mean(posteriors[:x Kk])

params x[2][:,:,k+1] = cov(posteriors[:x Kk])
end

Progress: 100% | INEEEEEG_——— | Time: 0:00:05

Let's see how well the model did.

=10 F

=201

—30 F

—— states
@ cobservations
B posteriors

]

25

5IIII
time [k]

75

100

So, what is happening here?

We have 1-dimensional noisy position observations y; and 2-dimensional hidden states
X , where the first element is the true position and the second element velocity.

| started with a state-space model of the following form:
X = AXp—1 + wy

Vi = Cxp + vy

)) 1 At .. .
where A is a known transition matrix, A = [:] and C a known emission matrix,

c=1[1 ol

The process noise wy, is white: w;, ~ N (0, Q).
Gaussian distributions have an interesting property:
ifz~N(@O,1), thenx =0cz4+uy = x~ N(u,o0).
We can view the state transition equation as a transformation of the noise variable:

xp ~ N(Axx_1, Q).

Similarly, for measurement noise v, ~ N (0, R), we can write:

Vi ~ N(Cxi, R).

In this state-space model, we start with a x. Suppose this is also Gaussian distributed:

xo ~ N(my, Sp)

Think of this as a solid guess for what the initial state is, characterized by our
uncertainty surrounding it.

We want to infer the next state x;. Using the calculus of probability, we express this as:

1
p(y1)

p(x1 | y1) = /P(M | x1)p(x1 | x0)p(x0)dxp .

But how do you actually solve this?

We know that p(x; | x¢) = N (x | Axg, Q) and p(xy) = N'(mg, Sp). You can form
a bivariate Gaussian out of these two:

LT Ll s, aso
X1 Amy | | AS, AS,AT +0

If you then integrate out x(, you get:

x1 ~ N(Amy, ASpAT + Q) .

You might recognize the parameters of this distribution as the predict step in the classic
derivation of the Kalman filter (paraphrased from Wikipedia):

Mk—1 = AMj_1 k-1
& T
Skjk=1 = ASj_1—1A° + 0.

Since we know that p(y; | x) is also Gaussian, we can perform the same trick to
obtain a joint distribution p(y;, x1).

Now, we are left with Bayes' rule:

P(Y1, X1)

p(x1 | y1) = o)

Usually, you can't compute p(y;). But with Gaussians, you can obtain a conditional
distribution from a joint. For a joint distribution over x, y

v(GI S S

the conditional p(x | y) is:
N@+CB'(y—b),A-CB!'C").

Again, you might recognize the structure of the parameters from the update step for the
Kalman filter:

My = Mijk—1 + Ki(yx — Cimgpr—1) -

If consider the general case, p(xx | y1:x), and kept proper track of notation, then you
will find that recursively computing the posterior distribution is equivalent to Kalman
filtering.

ForneylLab is designed to automatically performs all these conditioning and
marginalization operations.

But the probabilistic perspective can do much more. For example, we can
simultaneously estimate unknown (time-varying) parameters, such as process noise
volatility.

Break

Not all models consist of purely Gaussian distributions. Often, we do not have analytical
solutions to integrals.

In that case, we can do a form of approximate Bayesian inference: Variational Bayes.

The gist of Variational Bayes is that we approximate the intractable posterior with a

tractable distribution.

Again, what is happening here?

The red contour plot you see is a Normal-Gamma distribution:

pu, 7| x) = NG(u, 7 | m,1,a,b)

It is a distribution of a mean parameter u and a precision parameter 7, that come from a
Gaussian likelihood function. Suppose we don't know how to perform the necessary
marginalization and conditioning operations to obtain properties of this distribution.

We can pose another simpler distribution g(u, 7) that we can use to approximate the
posterior p(u, T | x) as well as possible.

But what is this g(u, 7)?

Let the approximating, or recognition distribution, factorize as follows:

q(u,) = q(p) q(7)
where

Q(,M) ~ N(m,ua U,Ll)

q(r) ~I'(a;, by) .

In words: we are going to approximate the posterior distribution with the product of a
Normal distribution and a Gamma distribution, that are assumed to be independent of
each other.

We measure how well g approximates p with an objective function known as the Free
Energy function:

q(u)q(7) dud
p(u, 7, X)

b

Flql = / q(1)q(t) log

Note that this function contains the joint p(u, 7, x) instead of the posterior. Remember
that the joint can be written as: p(u, 7 | x)p(x). That is the posterior times "model
evidence".

So, the Free Energy function contains both the Kullback-Leibler divergence between the
true posterior p and the approximing distribution g, as well as the model evidence which
allow you to compare models.

But what are we optimizing over?

We want to change g(u) and g(7) to improve the approximation. You change
distributions by changing parameters. So, the answer is that we are optimizing over the
parameters of the two ¢'s.

You can derive the analytic form of the optimal recognition factors:

q" (1) x exp (IEC](T)[_ log N'(x|u, 7)1 + Eyry [— log N'G (u, z|my, Iy, ay, bo)])
q" (1) o exp ([Eq(,u)[_ log N'(x|p, 7)1 + Eguy[— log N'G (u, T|my, 1o, ap, bo)])

If you work out all the expectations, then you get analytic expressions for the
parameters of the recognition distributions:

my, = (nx + lomg) / (n + [p)
a, -1
vy = (b—(n + lo))

T

n+1
2

1
br = b + 5 lo(m2 = 2mom,, + m3, + v,) + n(% — 2%m,, + m3, + v,)| .

a?:ao+

Note that each parameter update depends on the other parameters. We therefore
initialize them and iteratively update them.

==> This is a coordinate descent algorithm.

If we look back at the animation, you can see that we iteratively update the parameters
for g(u) and q(7):

& Map

Break

At BIASlab, we use the Free Energy Minimisation framework to design more
complicated signal processing systems.

We work a lot on hierarchical models that induce time-varying parameter estimates.
One example of this is our Hierarchical Gaussian Filter. It is essentially a Kalman filter,
with an higher-layer random walk that governs process noise covariance.

In [12]: # Import custom GaussianControlledVariance node
using GCV

Start graph
graph = FactorGraph();

Volatility parameters
0.9

0.0

0.005

= < g X

Previous volatility
@RV z kminl ~ GaussianMeanVariance(placeholder(:m z kminl), placeholder(:v _z kmi
nl))

Current volatility
@RV z k ~ GaussianMeanPrecision(z kminl, vy)

Previous state
@RV x kminl ~ GaussianMeanVariance(placeholder(:m x kminl), placeholder(:v x kmi
nl))

Current state
@RV x k ~ GaussianControlledVariance(x kminl, z k, kK, w)

Current observation
@RV y k ~ GaussianMeanVariance(x k, R)

Data placeholder
placeholder(y k, :y k);

In [13]: q = PosteriorFactorization([z kminl; z k], [x kminl; x k]; ids=[:Z,:X])
algorithm = messagePassingAlgorithm(free energy=true)
source code = algorithmSourceCode(algorithm, free energy=true);
eval(Meta.parse(source code))

Recursive estimation
@showprogress for k = 1:T

Feed data

data = Dict(:y k => observations[k],
:m X _kminl => params x[1][K],
:v_X _kminl => params x[2][K],
:m_z kminl => params z[1][K],
:v_z kminl => params z[2][k])

Iteratively update recognition factors
for 1 = 1:10

stepX!(data, posteriors)

stepZ! (data, posteriors)
end

Update parameter estimates

params_ x[1][k+1] mean (posteriors[:x k])

params x[2][k+1] cov(posteriors[:x kI])

params_z[1][k+1] mean(posteriors[:z k])

params z[2][k+1] cov(posteriors[:z k])
end

Progress: 100% | |EEEE—_—————— N | Time: 0:00:20

10

-10

—20

—30

mEm volatility

0 25 50 75 100
—— states
@ observations
[inferred
-
i i i . i i
] 25 50 75 100

time [k]

Questions?

BIASIab:
Bert de Vries ar Ivan Bocharov Ismail Senoz Se mihAkbavrak Magnus Koudahl Albert Podusenko Dmitry Bagaev
References:

o ForneyLab.jl (https:/github.com/biaslab/ForneyLab.jl)

« Hierarchical Gaussian Filter
(https:/biaslab.github.io/pdf/mlsp2018/senoz_mlsp 2018.pdf)

o Simon Sarkka - Bayesian Filtering & Smoothing
(https:/www.cambridge.org/core/books/bayesian-filtering-and-
smoothing/C372FB31C5D9A100F8476C1B23721A67)

https://github.com/biaslab/ForneyLab.jl
https://biaslab.github.io/pdf/mlsp2018/senoz_mlsp_2018.pdf
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67

