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Suppose you're ge�ng the following incoming signal:



Let's start modeling this signal with a standard Kalman filter. For this, I will use our
toolbox .ForneyLab.jl (h�ps://github.com/biaslab/ForneyLab.jl)

https://github.com/biaslab/ForneyLab.jl


In [5]: # Process noise covariance matrix 

Q = [1. 0.;  

    0. 1.] 

# Measurement noise variance 

R = 1.0 

# Transition matrix 

Δt = 0.1 

A = [1. Δt;  

    0. 1.] 

# Emission matrix 

C = [1., 0.] 

# Previous state 

@RV x_kmin1 ~ GaussianMeanVariance(placeholder(:m_kmin1, dims=(2,)),  

                                  placeholder(:S_kmin1, dims=(2,2))) 

# State transition 

@RV x_k ~ GaussianMeanVariance(A*x_kmin1, Q) 

# Observation likelihood 

@RV y_k ~ GaussianMeanVariance(dot(C, x_k), R); 

# Manually mark y_k as observed variable 

placeholder(y_k, :y_k); 



Next, I am going to specify an inference algorithm. ForneyLab will compile one based on
the model specifica�on and we can run it to obtain es�mates for each �me step.

In [7]: # Compile algorithm and bring to scope 

algorithm = messagePassingAlgorithm(x_k) 

source_code = algorithmSourceCode(algorithm) 

eval(Meta.parse(source_code)) 

# Recursive estimation 

@showprogress for k = 1:T 

   

   # Feed data 

   data = Dict(:y_k => observations[k], 

               :m_kmin1 => params_x[1][:,k], 

               :S_kmin1 => params_x[2][:,:,k]) 

    

   # Update posterior 

   step!(data, posteriors) 

    

   # Update parameter estimates 

   params_x[1][:,k+1] = mean(posteriors[:x_k]) 

   params_x[2][:,:,k+1] = cov(posteriors[:x_k])  

end 

Progress: 100%|█████████████████████████████████████████| Time: 0:00:05 



Let's see how well the model did.



So, what is happening here?

We have 1-dimensional noisy posi�on observa�ons  and 2-dimensional hidden states 
, where the first element is the true posi�on and the second element velocity.

I started with a state-space model of the following form:

where  is a known transi�on matrix, , and  a known emission matrix, 

.
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The process noise  is white: .

Gaussian distribu�ons have an interes�ng property:

We can view the state transi�on equa�on as a transforma�on of the noise variable:

𝑤𝑘 ∼  (0, 𝑄)𝑤𝑘

if 𝑧 ∼  (0, 1),  then 𝑥 = 𝜎𝑧 + 𝜇 ⟹ 𝑥 ∼  (𝜇, 𝜎) .

∼  (𝐴 , 𝑄) .𝑥𝑘 𝑥𝑘−1

Similarly, for measurement noise , we can write:∼  (0, 𝑅)𝑣𝑘

∼  (𝐶 , 𝑅) .𝑦𝑘 𝑥𝑘



In this state-space model, we start with a . Suppose this is also Gaussian distributed:𝑥0

∼  ( , )𝑥0 𝑚0 𝑆0

Think of this as a solid guess for what the ini�al state is, characterized by our
uncertainty surrounding it.



We want to infer the next state . Using the calculus of probability, we express this as:

But how do you actually solve this?
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We know that  and . You can form
a bivariate Gaussian out of these two:

𝑝( ∣ ) =  ( ∣ 𝐴 , 𝑄)𝑥1 𝑥0 𝑥1 𝑥0 𝑝( ) =  ( , )𝑥0 𝑚0 𝑆0

 ([ ] ∣ [ ] , [ ]) .
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If you then integrate out , you get:𝑥0

∼  (𝐴 , 𝐴 + 𝑄) .𝑥1 𝑚0 𝑆0𝐴⊤

You might recognize the parameters of this distribu�on as the predict step in the classic
deriva�on of the Kalman filter (paraphrased from Wikipedia):

=𝑚̂ 𝑘|𝑘−1

=𝑆̂ 
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Since we know that  is also Gaussian, we can perform the same trick to
obtain a joint distribu�on .

𝑝( ∣ )𝑦1 𝑥1

𝑝( , )𝑦1 𝑥1

Now, we are le� with Bayes' rule:

𝑝( ∣ ) = .𝑥1 𝑦1

𝑝( , )𝑦1 𝑥1

𝑝( )𝑦1



Usually, you can't compute . But with Gaussians, you can obtain a condi�onal
distribu�on from a joint. For a joint distribu�on over 

the condi�onal  is:
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Again, you might recognize the structure of the parameters from the update step for the
Kalman filter:

= + ( − 𝐶 ) .𝑚𝑘|𝑘 𝑚̂ 𝑘|𝑘−1 𝐾𝑘 𝑦𝑘 𝑚̂ 𝑘|𝑘−1



If consider the general case, , and kept proper track of nota�on, then you
will find that recursively compu�ng the posterior distribu�on is equivalent to Kalman
filtering.

𝑝( ∣ )𝑥𝑘 𝑦1:𝑘

ForneyLab is designed to automa�cally performs all these condi�oning and
marginaliza�on opera�ons.

But the probabilis�c perspec�ve can do much more. For example, we can
simultaneously es�mate unknown (�me-varying) parameters, such as process noise
vola�lity.



Break



Not all models consist of purely Gaussian distribu�ons. O�en, we do not have analy�cal
solu�ons to integrals.

In that case, we can do a form of approximate Bayesian inference: Varia�onal Bayes.



The gist of Varia�onal Bayes is that we approximate the intractable posterior with a
tractable distribu�on.



Again, what is happening here?

The red contour plot you see is a Normal-Gamma distribu�on:

It is a distribu�on of a mean parameter  and a precision parameter , that come from a
Gaussian likelihood func�on. Suppose we don't know how to perform the necessary
marginaliza�on and condi�oning opera�ons to obtain proper�es of this distribu�on.

𝑝(𝜇, 𝜏 ∣ 𝑥) = (𝜇, 𝜏 ∣ 𝑚, 𝑙, 𝑎, 𝑏)

𝜇 𝜏



We can pose another simpler distribu�on  that we can use to approximate the
posterior  as well as possible.

𝑞(𝜇, 𝜏)
𝑝(𝜇, 𝜏 ∣ 𝑥)

But what is this ?𝑞(𝜇, 𝜏)

Let the approxima�ng, or recogni�on distribu�on, factorize as follows:

where

In words: we are going to approximate the posterior distribu�on with the product of a
Normal distribu�on and a Gamma distribu�on, that are assumed to be independent of
each other.

𝑞(𝜇, 𝜏) = 𝑞(𝜇) 𝑞(𝜏)

𝑞(𝜇) ∼

𝑞(𝜏) ∼

  ( , )𝑚𝜇 𝑣𝜇

 Γ( , ) .𝑎𝜏 𝑏𝜏



We measure how well  approximates  with an objec�ve func�on known as the Free
Energy func�on:

𝑞 𝑝

[𝑞] = ∫ 𝑞(𝜇)𝑞(𝜏) log d𝜇d𝜏 ,
𝑞(𝜇)𝑞(𝜏)

𝑝(𝜇, 𝜏, 𝑥)

Note that this func�on contains the joint  instead of the posterior. Remember
that the joint can be wri�en as: . That is the posterior �mes "model
evidence".

So, the Free Energy func�on contains both the Kullback-Leibler divergence between the
true posterior  and the approximing distribu�on , as well as the model evidence which
allow you to compare models.

𝑝(𝜇, 𝜏, 𝑥)
𝑝(𝜇, 𝜏 ∣ 𝑥)𝑝(𝑥)

𝑝 𝑞



But what are we op�mizing over?

We want to change  and  to improve the approxima�on. You change
distribu�ons by changing parameters. So, the answer is that we are op�mizing over the
parameters of the two 's.

𝑞(𝜇) 𝑞(𝜏)

𝑞



You can derive the analy�c form of the op�mal recogni�on factors:

(𝜇) ∝𝑞∗

(𝜏) ∝𝑞∗

  exp ( [− log  (𝑥|𝜇, 𝜏)] + [− log  (𝜇, 𝜏| , , , )])𝔼𝑞(𝜏) 𝔼𝑞(𝜏) 𝑚0 𝑙0 𝑎0 𝑏0

  exp ( [− log  (𝑥|𝜇, 𝜏)] + [− log  (𝜇, 𝜏| , , , )])𝔼𝑞(𝜇) 𝔼𝑞(𝜇) 𝑚0 𝑙0 𝑎0 𝑏0



If you work out all the expecta�ons, then you get analy�c expressions for the
parameters of the recogni�on distribu�ons:
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Note that each parameter update depends on the other parameters. We therefore
ini�alize them and itera�vely update them.

==> This is a coordinate descent algorithm.



If we look back at the anima�on, you can see that we itera�vely update the parameters
for  and :𝑞(𝜇) 𝑞(𝜏)



Break



At BIASlab, we use the Free Energy Minimisa�on framework to design more
complicated signal processing systems.

We work a lot on hierarchical models that induce �me-varying parameter es�mates.
One example of this is our Hierarchical Gaussian Filter. It is essen�ally a Kalman filter,
with an higher-layer random walk that governs process noise covariance.



In [12]: # Import custom GaussianControlledVariance node 

using GCV 

# Start graph 

graph = FactorGraph(); 

# Volatility parameters 

κ = 0.9 

ω = 0.0 

γ = 0.005 

# Previous volatility 

@RV z_kmin1 ~ GaussianMeanVariance(placeholder(:m_z_kmin1), placeholder(:v_z_kmi

n1)) 

# Current volatility 

@RV z_k ~ GaussianMeanPrecision(z_kmin1, γ) 

# Previous state 

@RV x_kmin1 ~ GaussianMeanVariance(placeholder(:m_x_kmin1), placeholder(:v_x_kmi

n1)) 

# Current state 

@RV x_k ~ GaussianControlledVariance(x_kmin1, z_k, κ, ω) 

# Current observation 

@RV y_k ~ GaussianMeanVariance(x_k, R) 

# Data placeholder 

placeholder(y_k, :y_k); 



In [13]: q = PosteriorFactorization([z_kmin1; z_k],[x_kmin1; x_k]; ids=[:Z,:X]) 

algorithm = messagePassingAlgorithm(free_energy=true) 

source_code = algorithmSourceCode(algorithm, free_energy=true); 

eval(Meta.parse(source_code)) 

# Recursive estimation 

@showprogress for k = 1:T 

   

   # Feed data 

   data = Dict(:y_k => observations[k], 

               :m_x_kmin1 => params_x[1][k], 

               :v_x_kmin1 => params_x[2][k], 

               :m_z_kmin1 => params_z[1][k], 

               :v_z_kmin1 => params_z[2][k]) 

    

   # Iteratively update recognition factors 

   for i = 1:10 

       stepX!(data, posteriors) 

       stepZ!(data, posteriors) 

   end 

    

   # Update parameter estimates 

   params_x[1][k+1] = mean(posteriors[:x_k]) 

   params_x[2][k+1] = cov(posteriors[:x_k])  

   params_z[1][k+1] = mean(posteriors[:z_k]) 

   params_z[2][k+1] = cov(posteriors[:z_k])  

end 

Progress: 100%|█████████████████████████████████████████| Time: 0:00:20 





Ques�ons?

BIASlab:

References:

ForneyLab.jl (h�ps://github.com/biaslab/ForneyLab.jl)
Hierarchical Gaussian Filter
(h�ps://biaslab.github.io/pdf/mlsp2018/senoz_mlsp_2018.pdf)
Simon Särkkä - Bayesian Filtering & Smoothing
(h�ps://www.cambridge.org/core/books/bayesian-filtering-and-
smoothing/C372FB31C5D9A100F8476C1B23721A67)

https://github.com/biaslab/ForneyLab.jl
https://biaslab.github.io/pdf/mlsp2018/senoz_mlsp_2018.pdf
https://www.cambridge.org/core/books/bayesian-filtering-and-smoothing/C372FB31C5D9A100F8476C1B23721A67

