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Uncertainty

• What value do parameters in my model have?

• How many parameters affect my system?

• Do my parameters change over time?

• Is my system affected by external disturbances?

• Which model should I select for this system?

• What should I measure to identify my system?

3 Onderzoeksraad voor veiligheid: https://youtu.be/LJevke4_i5Y



Modelling

Typical models for system identification look something like

𝑥𝑥𝑘𝑘 = 𝑓𝑓𝜃𝜃 𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘 + 𝑤𝑤𝑘𝑘 ,
𝑦𝑦𝑘𝑘 = 𝑔𝑔𝜂𝜂 𝑥𝑥𝑘𝑘 + 𝑣𝑣𝑘𝑘 .

or like
𝑦𝑦𝑘𝑘 = 𝑓𝑓𝜃𝜃 𝑢𝑢𝑘𝑘 ,𝑢𝑢𝑘𝑘−1, … ,𝑦𝑦𝑘𝑘−1, … + 𝑒𝑒𝑘𝑘 ,

But where are the uncertainties?
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Probabilistic modelling

Probabilistic models aim to include more sources of uncertainty:

𝑝𝑝 𝑦𝑦, 𝑢𝑢,𝜃𝜃,𝜎𝜎 = 𝑝𝑝 𝑦𝑦 𝑢𝑢,𝜃𝜃,𝜎𝜎 𝑝𝑝 𝑢𝑢 𝑝𝑝 𝜃𝜃 𝑝𝑝(𝜎𝜎)

Formally, one also conditions on assumptions leading to model design:
𝑝𝑝 𝑦𝑦,𝑢𝑢, 𝜃𝜃,𝜎𝜎 | ℳ = 𝓂𝓂1
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Inference

We can estimate unknowns by inverting the model:

𝑝𝑝 𝜃𝜃 | 𝑥𝑥 =
𝑝𝑝 𝑥𝑥 𝜃𝜃)
𝑝𝑝(𝑥𝑥) 𝑝𝑝(𝜃𝜃)

This is known as Bayes’ rule.
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Is all that extra work useful?

7 Kouw, Podusenko, Koudahl & Schoukens (2022). Variational message passing for online polynomial NARMAX identification.

Yes



Factor graphs

Probabilistic model equations quickly become complex and hard to read.

It helps to adopt a visual language: factor graphs.
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𝑝𝑝(𝑥𝑥|𝜃𝜃)

Edges represent variables in the model.

Nodes represent relationships between variables.

𝜽𝜽

𝒙𝒙



Message passing

The following is a complete factor graph:
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𝑝𝑝(𝑥𝑥|𝜃𝜃)

𝑝𝑝(𝜃𝜃)

𝜽𝜽

�̂�𝒙

Terminal nodes are priors.

Black nodes represent observed data.

The combination of the prior and the likelihood to form the 
posterior can be expressed as messages passed from nodes.

𝒑𝒑 𝜽𝜽 𝒙𝒙 = �𝒙𝒙 ∝ �𝜹𝜹(𝒙𝒙 − �𝒙𝒙)𝒑𝒑 𝒙𝒙 𝜽𝜽 𝒅𝒅𝒙𝒙 𝒑𝒑(𝜽𝜽)

𝝁𝝁(𝜽𝜽)

𝝁𝝁(𝜽𝜽)



Demonstration system
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Model 1
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Consider a prediction based on an unaltered input 𝑢𝑢𝑘𝑘 with likelihood variance 𝜎𝜎2:

𝑦𝑦𝑘𝑘 = 𝑢𝑢𝑘𝑘 + 𝑒𝑒𝑘𝑘,    with  𝑒𝑒𝑘𝑘~𝒩𝒩 0,𝜎𝜎2 .

In probabilistic model form, this could become:

𝑝𝑝 𝑦𝑦𝑘𝑘 ,𝜎𝜎2|𝑢𝑢𝑘𝑘 = 𝒩𝒩 𝑦𝑦𝑘𝑘 𝑢𝑢𝑘𝑘 ,𝜎𝜎2 Γ 𝜎𝜎2|𝛼𝛼,𝛽𝛽 . 𝒩𝒩

Γ

𝝈𝝈𝟐𝟐

𝒚𝒚𝒌𝒌

𝒖𝒖𝒌𝒌



Model 1
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Model 1
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Model 1

14

This model obviously doesn’t work very well.

A straightforward extension is a NARX model:

𝑦𝑦𝑘𝑘 = 𝜃𝜃⊺𝜑𝜑 𝑢𝑢𝑘𝑘 ,𝑢𝑢𝑘𝑘−1, … ,𝑦𝑦𝑘𝑘−1, … + 𝑒𝑒𝑘𝑘 ,

But now we run into a problem: we can’t obtain a posterior distribution.

It requires solving an intractable integral:

𝑝𝑝 𝑦𝑦𝑘𝑘 𝑢𝑢𝑘𝑘 = �𝑝𝑝 𝑦𝑦𝑘𝑘 𝑢𝑢𝑘𝑘 ,𝜃𝜃,𝜎𝜎2 𝑝𝑝 𝜃𝜃 𝑝𝑝 𝜎𝜎2 𝑑𝑑𝜃𝜃𝑑𝑑𝜎𝜎2



Exact inference

Limited to conjugate priors:
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Approximate inference

We may approximate the posterior 𝑝𝑝 𝜃𝜃 𝑥𝑥 with a distribution 𝑞𝑞 𝜃𝜃 .

To do that, we need an objective characterizing the dissimilarity between 𝑞𝑞 and 𝑝𝑝.

ℱ 𝑞𝑞 = �
𝛩𝛩
𝑞𝑞(𝜃𝜃) log

𝑞𝑞(𝜃𝜃)
𝑝𝑝(𝜃𝜃, 𝑥𝑥)𝑑𝑑𝜃𝜃

This is known as a “free energy” functional and may be understood through:

ℱ 𝑞𝑞 = �
𝛩𝛩
𝑞𝑞(𝜃𝜃) log

1
𝑝𝑝(𝑥𝑥|𝜃𝜃)𝑑𝑑𝜃𝜃 + �

𝛩𝛩
𝑞𝑞 𝜃𝜃 log

𝑞𝑞(𝜃𝜃)
𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃
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prediction error complexity



Minimizing free energy

The free energy is a functional, i.e., a function of functions.

We are looking for the probability distribution function that minimizes it:
𝑞𝑞∗ = arg min

𝑞𝑞∈𝒬𝒬
ℱ 𝑞𝑞

The space 𝒬𝒬 represents the space of candidate functions. 

Possible constraints on 𝒬𝒬 include:

1. Data, 𝑞𝑞 𝑥𝑥 = 𝛿𝛿(𝑥𝑥 − �𝑥𝑥).

2. Parametrization, 𝑞𝑞 𝜃𝜃 = 𝒩𝒩(𝜃𝜃|𝑚𝑚, 𝑣𝑣).

17 Van de Laar (2021). Chance-constrained active inference.

3. Factorization, 𝑞𝑞 𝑥𝑥,𝜃𝜃 = 𝑞𝑞 𝑥𝑥 𝑞𝑞 𝜃𝜃 .
4. Probability mass in a subspace.



Minimizing free energy

Suppose we have a distribution 𝑝𝑝(𝜃𝜃) and we wish to minimize:

ℱ 𝑞𝑞 = �
Θ
𝑞𝑞(𝜃𝜃) log

𝑞𝑞(𝜃𝜃)
𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃

The function 𝑞𝑞 is constrained to be a valid probability distribution: 

ℒ 𝑞𝑞 = ℱ 𝑞𝑞 + 𝜆𝜆 �
Θ
𝑞𝑞 𝜃𝜃 𝑑𝑑𝜃𝜃 − 1 .

To find the minimizer, we must find the functional derivative 𝛿𝛿
𝛿𝛿𝑞𝑞
ℒ 𝑞𝑞 and set it to 0.

In essence, variational Bayes turns integration into optimization.
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Variations on a curve

Consider two fixed anchor points with a chain hanging between them:

The red chain minimizes potential energy (from Lagrangian mechanics).

In our probabilistic model, we have variations  𝑞𝑞 𝜃𝜃 = 𝑞𝑞∗ 𝜃𝜃 + 𝜀𝜀𝜀𝜀(𝜃𝜃).

19

𝒈𝒈

“variations”

𝒍𝒍

𝒎𝒎



Minimizing free energy

We can find the functional derivative by considering how much the Lagrangian
changes as a function of the variation, and setting that to 0;

𝑑𝑑
𝑑𝑑𝜀𝜀 ℒ 𝑞𝑞∗ + 𝜀𝜀𝜀𝜀 �

𝜀𝜀=0
= 0

Expanding the Lagrangian gives:

�
Θ

𝑑𝑑
𝑑𝑑𝜀𝜀

𝑞𝑞∗ + 𝜀𝜀𝜀𝜀 log
𝑞𝑞∗ + 𝜀𝜀𝜀𝜀

𝑝𝑝 �
𝜀𝜀=0

𝑑𝑑𝜃𝜃 + 𝜆𝜆�
Θ

𝑑𝑑
𝑑𝑑𝜀𝜀

𝑞𝑞∗ + 𝜀𝜀𝜀𝜀 �
𝜀𝜀=0

𝑑𝑑𝜃𝜃 = 0

�
Θ

log
𝑞𝑞∗

𝑝𝑝 + 1 + 𝜆𝜆 𝜀𝜀𝑑𝑑𝜃𝜃 = 0

20 Senöz, van de Laar, Bagaev & de Vries (2021). Variational Message Passing and Local Constraint Manipulation in Factor Graphs.



Minimizing free energy

The common term is the functional derivative we were looking for.

�
Θ

log
𝑞𝑞∗

𝑝𝑝 + 1 + 𝜆𝜆 𝜀𝜀𝑑𝑑𝜃𝜃

The Lagrangian is 0 when the functional derivative is 0:
𝛿𝛿
𝛿𝛿𝑞𝑞 ℒ 𝑞𝑞 = log

𝑞𝑞∗

𝑝𝑝 + 1 + 𝜆𝜆 = 0

𝑞𝑞∗ =
1

exp 1 + 𝜆𝜆 𝑝𝑝

21 Senöz, van de Laar, Bagaev & de Vries (2021). Variational Message Passing and Local Constraint Manipulation in Factor Graphs.



Variational message passing

One can distribute the free energy functional over a factor graph.
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𝑝𝑝(𝑥𝑥|𝜃𝜃)

𝑝𝑝(𝜃𝜃)

𝜽𝜽

𝒙𝒙

𝝁𝝁(𝜽𝜽)

𝝁𝝁(𝜽𝜽)

Variational approximation can be applied to factor nodes locally.

This turns standard messages into “variational messages”.

𝜈𝜈(𝜃𝜃) ∝ exp �
𝒳𝒳
𝑞𝑞 𝑥𝑥 log𝑝𝑝 𝑥𝑥|𝜃𝜃 𝑑𝑑𝑥𝑥

𝝂𝝂(𝜽𝜽)

Dauwels (2007). On variational message passing on factor graphs.



Model 2
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Model 2
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Take-aways

1. Quantified uncertainty should be part of models.

2. Variational Bayes turns integration into optimization.

3. Variational message passing is inference distributed over a factor graph.
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Checkout:
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https://github.com/biaslab/RxInfer.jl
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Weakly informative priors

A common critique is that the act of “choosing priors” leads to non-objective results.

-> One should rely on as generic and uninformative priors as possible.

In the case of polynomial NARX models, I argue that one may use “weak 
information” in the sense that lower-order terms are more likely to have large 
coefficients than higher-order terms.

- This may be incorporated by having a zero-mean Gaussian prior with large 
variances for low-order terms (indicating uncertainty) and small variances for 
high-order terms (i.e., you are certain that the coefficient is close to 0).
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Alternative free energy decomposition

The “free energy” objective decomposes into prediction error and complexity:

ℱ 𝑞𝑞 = �
𝛩𝛩
𝑞𝑞(𝜃𝜃) log

1
𝑝𝑝(𝑥𝑥|𝜃𝜃)𝑑𝑑𝜃𝜃 + �

𝛩𝛩
𝑞𝑞 𝜃𝜃 log

𝑞𝑞(𝜃𝜃)
𝑝𝑝(𝜃𝜃)𝑑𝑑𝜃𝜃

It can also be decomposed as an upper bound to negative model evidence:

ℱ 𝑞𝑞 = �
𝛩𝛩
𝑞𝑞(𝜃𝜃) log

𝑞𝑞(𝜃𝜃)
𝑝𝑝(𝜃𝜃|𝑥𝑥)𝑑𝑑𝜃𝜃 − log𝑝𝑝(𝑥𝑥)

In this sense, a smaller free energy means 1) a better approximation of the posterior 
and/or 2) a better model for the given data.
29

approximation to posterior (≥ 𝟎𝟎)
model evidence



Normalization

The solution for 𝑞𝑞∗ led to a mysterious 1 / exp term. Where does that come from?

It comes from the normalization constraint imposed on the Lagrangian.

If we plug the optimal form into the constraint function, we get:

�
1

exp 1 + 𝜆𝜆 𝑝𝑝 𝜃𝜃 𝑑𝑑𝜃𝜃 − 1 = 0

Solving for 𝜆𝜆 gives: 

𝜆𝜆 = log�𝑝𝑝 𝜃𝜃 𝑑𝑑𝜃𝜃 − 1
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Mean-field

If there are multiple unknowns in the model, then you may choose to factorize 𝑞𝑞:
𝑞𝑞 𝜃𝜃,𝜎𝜎2 ∶= 𝑞𝑞 𝜃𝜃 𝑞𝑞 𝜎𝜎2

You would have multiple approximations, each dependent on the others.

-> Solutions must be iterated until convergence.

“Mean-field” is a common factorization choice,
but may lead to poor performance.

“Structured” factorizations are richer, 
but require more manual derivation work.
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Limitations

Common parametric distributions are not closed under nonlinear transformations.

- A squared Gaussian distributed random variable is not Gaussian distributed.

Typical simplifications of 𝑞𝑞 are based on (in)dependence between variables.

- This may cause under-estimation of variance.

Not much is known about the stability of variational Bayesian estimators and some 
appear to be (at least numerically) unstable in practice.
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